Coupled dynamical system based arm-hand grasping model for learning fast adaptation strategies

نویسندگان

  • Ashwini Shukla
  • Aude Billard
چکیده

Performing manipulation tasks interactively in real environments requires a high degree of accuracy and stability. At the same time, when one cannot assume a fully deterministic and static environment, one must endow the robot with the ability to react rapidly to sudden changes in the environment. These considerations make the task of reach and grasp difficult to deal with. We follow a programming by demonstration (PbD) approach to the problem and take inspiration from the way humans adapt their reach and grasp motions when perturbed. This is in sharp contrast to previous work in PbD that uses unperturbed motions for training the system and then applies perturbation solely during the testing phase. In this work, we record the kinematics of arm and fingers of human subjects during unperturbed and perturbed reach and grasp motions. In the perturbed demonstrations, the target’s location is changed suddenly after the onset of the motion. Data show a strong coupling between the hand transport and finger motions. We hypothesize that this coupling enables the subject to seamlessly and rapidly adapt the finger motion in coordination with the hand posture. To endow our robot with this competence, we develop a Coupled Dynamical System based controller, whereby two dynamical systems driving the hand and finger motions are coupled. This offers a compact encoding for reach-to-grasp motions that ensures fast adaptation with zero latency for re-planning. We show in simulation and on the real iCub robot that this coupling ensures smooth and “human-like” motions. We demonstrate the performance of our model under spatial, temporal and grasp type perturbations which show that reaching the target with coordinated hand-arm motion is necessary for the success of the task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Dynamical System Based Hand-Arm Grasp Planning under Real-Time Perturbations

Robustness to perturbation has been advocated as a key element to robot control and efforts in that direction are numerous. While in essence these approaches aim at “endowing robots with a flexibility similar to that displayed by humans”, few have actually looked at how humans react in the face of fast perturbations. We recorded the kinematic data from human subjects during grasping motions und...

متن کامل

Learning Reach-to-Grasp Motions From Human Demonstrations

R eaching over to grasp an item is arguably the most commonly used motor skill by humans. Even under sudden perturbations, humans seem to react rapidly and adapt their motion to guarantee success. Despite the apparent ease and frequency with which we use this ability, a complete understanding of the underlying mechanisms cannot be claimed. It is partly due to such incomplete knowledge that adap...

متن کامل

A System for Affordance Based learning of Object Grasping in a Robot

A system is described which takes synergies extracted from human grasp experiments and maps these onto a robot vision and hand-arm platform to facilitate the transfer of skills [1]. This system forms part of a framework which is extended by adding a self organizing map based affordance learning system. This affordance system learns the correlations between perceived object features and relevant...

متن کامل

Grasping of a moving object with a robotic hand-eye system

Most robotic grasping tasks assume a stationary or xed object. In this paper, we explore the requirements for tracking and grasping a moving object. The focus of our work is to achieve a high level of interaction between a real-time vision system capable of tracking moving objects in 3-D and a robot arm equipped with a dexterous hand that can be used pick up a moving object. We are interested i...

متن کامل

Automated Tracking and Grasping of a Moving Object with a Robotic Hand-Eye System

Most robotic grasping tasks assume a stationary or fixed object. In this paper, we explore the requirements for tracking and grasping a moving object. The focus of our work is to achieve a high level of interaction between a real-time vision system capable of tracking moving objects in 3-D and a robot arm with gripper that can be used to pick up a moving object. There is an interest in explorin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2012